login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339558
Number of divisors of 2n that are the average of a pair of twin primes.
1
0, 1, 1, 1, 0, 3, 0, 1, 2, 1, 0, 3, 0, 1, 2, 1, 0, 4, 0, 1, 2, 1, 0, 3, 0, 1, 2, 1, 0, 5, 0, 1, 1, 1, 0, 5, 0, 1, 1, 1, 0, 4, 0, 1, 3, 1, 0, 3, 0, 1, 2, 1, 0, 5, 0, 1, 1, 1, 0, 5, 0, 1, 3, 1, 0, 3, 0, 1, 2, 1, 0, 5, 0, 1, 3, 1, 0, 3, 0, 1, 2, 1, 0, 4, 0, 1, 1, 1, 0, 7, 0
OFFSET
1,6
LINKS
FORMULA
a(n) = Sum_{d|(2*n)} c(d+1) * c(d-1), where c is the prime characteristic (A010051).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 * A241560 = 1.857671... . - Amiram Eldar, Jun 03 2024
EXAMPLE
a(6) = 3; There are 3 divisors of 2*6 = 12 that are the average of twin primes, namely 4, 6 and 12.
MAPLE
f:= proc(n) nops(select(t -> isprime(t-1) and isprime(t+1), numtheory:-divisors(2*n))) end proc:
map(f, [$1..100]); # Robert Israel, Jan 06 2021
MATHEMATICA
Table[Sum[(PrimePi[2n/i + 1] - PrimePi[2n/i]) (PrimePi[2n/i - 1] - PrimePi[2n/i - 2]) (1 - Ceiling[2n/i] + Floor[2n/i]), {i, 2n}], {n, 100}]
PROG
(PARI) a(n) = sumdiv(2*n, d, (d>1) && (bigomega(d^2-1)==2)); \\ Michel Marcus, Dec 16 2020
(PARI) a(n) = sumdiv(2*n, d, d > 1 && isprime(d-1) && isprime(d+1)); \\ Amiram Eldar, Jun 03 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Wesley Ivan Hurt, Dec 08 2020
STATUS
approved