login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339150
a(n) = Sum_{k=1..n} floor(k/2)! * floor((n - k)/2)! binomial((n-floor(k/2)-1), n-k).
0
1, 2, 3, 6, 12, 26, 62, 148, 396, 1044, 3024, 8784, 26928, 85824, 274320, 954720, 3149280, 11910240, 40253760, 164643840, 567181440, 2497703040, 8736698880, 41250263040, 146090649600, 736680268800, 2635858713600, 14145091430400, 51047113420800, 290574650419200
OFFSET
1,2
LINKS
Jonathan Fang, Zachary Hamaker, and Justin Troyka, On pattern avoidance in matchings and involutions, arXiv:2009.00079 [math.CO], 2020. See Theorem 1.6 (c).
MATHEMATICA
Array[Sum[Floor[k/2]! Floor[(# - k)/2]! Binomial[(# - Floor[k/2] - 1), # - k], {k, #}] &, 30]
PROG
(PARI) a(n) = sum(k=1, n, (k\2)! * ((n-k)\2)! * binomial(n-k\2-1, n-k)); \\ Michel Marcus, Nov 25 2020
CROSSREFS
Sequence in context: A152172 A001677 A373182 * A024422 A186771 A019525
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Nov 25 2020
STATUS
approved