login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339143
Number of (undirected) cycles in the graph C_6 X P_n.
6
1, 94, 2301, 53644, 1248517, 29059380, 676374187, 15743068612, 366430841199, 8528932801462, 198516848612143, 4620617865735414, 107548097901476485, 2503256858519071030, 58265046263626611537, 1356159518571223920304, 31565557014929042873017
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle
FORMULA
Empirical g.f.: -x*(1 + 63*x - 418*x^2 + 287*x^3 + 840*x^4 + 1721*x^5 - 2540*x^6 + 3001*x^7 - 1149*x^8 - 544*x^9 + 90*x^10) / ((-1 + x)^2 * (-1 + 29*x - 136*x^2 + 55*x^3 + 190*x^4 + 645*x^5 - 626*x^6 + 953*x^7 - 409*x^8 - 178*x^9 + 30*x^10)). - Vaclav Kotesovec, Dec 09 2020
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
def make_CnXPk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
grids.append((i + (n - 1) * k, i))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A339143(n):
universe = make_CnXPk(6, n)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles()
return cycles.len()
print([A339143(n) for n in range(1, 20)])
CROSSREFS
Cf. A180582 (Hamiltonian cycles), A339118, A339136, A339137, A339140, A339142.
Sequence in context: A218648 A278321 A189414 * A370237 A347723 A195757
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 25 2020
STATUS
approved