login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339142
Number of (undirected) cycles in the graph C_5 X P_n.
5
1, 52, 733, 9394, 119235, 1512196, 19177677, 243212478, 3084441599, 39117172360, 496087629441, 6291429718962, 79788500460003, 1011885230273244, 12832823194696645, 162747064808635206, 2063973507784856167, 26175505197898511728, 331960206747350288969, 4209950410912939269210
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
def make_CnXPk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
grids.append((i + (n - 1) * k, i))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A339142(n):
universe = make_CnXPk(5, n)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles()
return cycles.len()
print([A339142(n) for n in range(1, 9)])
CROSSREFS
Cf. A003731 (Hamiltonian cycles), A339117, A339136, A339137, A339140, A339143.
Sequence in context: A249712 A255945 A215365 * A264309 A160344 A163691
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 25 2020
EXTENSIONS
More terms from Ed Wynn, Jun 28 2023
STATUS
approved