login
A339065
Number of unlabeled loopless multigraphs with n edges rooted at two noninterchangeable vertices.
13
1, 4, 17, 69, 281, 1147, 4784, 20345, 88726, 396971, 1823920, 8605364, 41684417, 207201343, 1056244832, 5518054182, 29521703655, 161625956908, 904857279576, 5176569819167, 30241443710950, 180293374961036, 1096240011165724, 6793998104717138, 42894087222036022, 275735424352928682
OFFSET
0,2
EXAMPLE
The a(1) = 4 cases correspond to a single edge which can be attached to zero, one or both of the roots.
MATHEMATICA
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
edges[v_, t_] := Product[With[{g = GCD[v[[i]], v[[j]]]}, t[v[[i]]*v[[j]]/ g]^g], {i, 2, Length[v]}, {j, 1, i - 1}]*Product[With[{c = v[[i]]}, t[c]^Quotient[c-1, 2]*If[OddQ[c], 1, t[c/2]]], {i, 1, Length[v]}];
G[n_, x_, r_] := Module[{s = 0}, Do[s += permcount[p]*edges[Join[r, p], 1/(1 - x^#) &], {p, IntegerPartitions[n]}]; s/n!];
seq[n_] := Module[{A = O[x]^n}, G[2n, x+A, {1, 1}]//CoefficientList[#, x]&];
seq[15] (* Jean-François Alcover, Dec 01 2020, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
G(n, x, r)={my(s=0); forpart(p=n, s+=permcount(p)*edges(concat(r, Vec(p)), i->1/(1-x^i))); s/n!}
seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1, 1])))}
CROSSREFS
Cf. A050535, A007717 (one root), A339042, A339063, A339066.
Sequence in context: A344217 A033122 A330246 * A005511 A349695 A003127
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Nov 22 2020
STATUS
approved