login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338949
Number of unoriented colorings of the 24 octahedral facets (or 24 vertices) of the 4-D 24-cell using subsets of a set of n colors.
11
1, 18736, 249563343, 245072692820, 51780391393325, 4114243321427946, 166320182540310771, 4099464588809407728, 69243270244113372390, 868065984969662449300, 8550173137863803682016, 69007957379144017626756
OFFSET
1,2
COMMENTS
Each chiral pair is counted as one when enumerating unoriented arrangements. The Schläfli symbol of the 24-cell is {3,4,3}. It is self-dual.
LINKS
Index entries for linear recurrences with constant coefficients, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).
FORMULA
a(n) = (96*n^2 + 144*n^3 + 144*n^4 + 140*n^6 + 300*n^7 + 120*n^8 + 36*n^9 + 45*n^12 + 84*n^13 + 18*n^14 + 12*n^15 + 12*n^18 + n^24) / 1152.
a(n) = 1*C(n,1) + 18734*C(n,2) + 249507138*C(n,3) + 244074551860*C(n,4) + 50557523375300*C(n,5) + 3807232072474470*C(n,6) + 138599298699649830*C(n,7) + 2881219380682352640*C(n,8) + 37996512548398853085*C(n,9) + 341001760994302265550*C(n,10) + 2186424231002014796100*C(n,11) + 10365985337974980021000*C(n,12) + 37236922591331944681200*C(n,13) + 103077062953464218018400*C(n,14) + 222282219864764987928000*C(n,15) + 375541967632270447008000*C(n,16) + 497391180994576316448000*C(n,17) + 513995707397665741248000*C(n,18) + 409785508676334510720000*C(n,19) + 247034122336026305280000*C(n,20) + 108861226736398456320000*C(n,21) + 33078014473191367680000*C(n,22) + 6193712343691192320000*C(n,23) + 538583682060103680000*C(n,24), where the coefficient of C(n,k) is the number of unoriented colorings using exactly k colors.
a(n) = A338948(n) - A338950(n) = (A338948(n) + A338951(n)) / 2 = A338950(n) + A338951(n).
MATHEMATICA
Table[(96n^2+144n^3+144n^4+140n^6+300n^7+120n^8+36n^9+45n^12+84n^13+18n^14+12n^15+12n^18+n^24)/1152, {n, 15}]
LinearRecurrence[{25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1}, {1, 18736, 249563343, 245072692820, 51780391393325, 4114243321427946, 166320182540310771, 4099464588809407728, 69243270244113372390, 868065984969662449300, 8550173137863803682016, 69007957379144017626756, 471182396311499869193288, 2790108355121570273031710, 14612960014479438426745050, 68774495831757984888966336, 294660451484256436406752191, 1161683435155207577365494648, 4252399462403852518286044405, 14563558286595288907896687700, 46968928774940328123724865031, 143447144215320073513164583826, 416884377543198363455158598933, 1157756823443195554136397711600, 3083952997773835021725260467500}, 20] (* Harvey P. Dale, Mar 24 2024 *)
CROSSREFS
Cf. A338948 (oriented), A338950 (chiral), A338951 (achiral), A338953 (edges, faces), A000389 (5-cell), A128767 (8-cell vertices, 16-cell facets), A337957 (16-cell vertices, 8-cell facets), A338965 (120-cell, 600-cell).
Sequence in context: A226150 A081416 A051795 * A269886 A269765 A272401
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Nov 17 2020
STATUS
approved