OFFSET
0,5
LINKS
Eric Weisstein's World of Mathematics, Graphical partition.
EXAMPLE
The a(2) = 1 through a(10) = 16 partitions:
(11) (21) (22) (32) (33) (43) (44) (54) (55)
(31) (41) (42) (52) (53) (63) (64)
(2111) (51) (61) (62) (72) (73)
(2211) (2221) (71) (81) (82)
(3111) (3211) (3221) (3222) (91)
(4111) (3311) (3321) (3322)
(4211) (4221) (3331)
(5111) (4311) (4222)
(5211) (4321)
(6111) (4411)
(222111) (5221)
(321111) (5311)
(6211)
(7111)
(322111)
(421111)
For example, the partition (4,2,1,1,1,1) can be partitioned into {{1,1},{1,2},{1,4}} so is counted under a(10).
MATHEMATICA
stfs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[stfs[n/d], Min@@#>d&]], {d, Select[Rest[Divisors[n]], PrimeOmega[#]==2&]}]];
Table[Length[Select[IntegerPartitions[n], stfs[Times@@Prime/@#]!={}&]], {n, 0, 20}]
CROSSREFS
A320912 gives the Heinz numbers of these partitions.
A338915 counts the complement in even-length partitions.
A339563 counts factorizations of the same type.
A320655 counts factorizations into semiprimes.
A322353 counts factorizations into distinct semiprimes.
The following count partitions of even length and give their Heinz numbers:
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 10 2020
STATUS
approved