login
A338760
Subword complexity of a certain infinite word.
1
1, 2, 4, 8, 15, 28, 47, 73, 107, 150, 203, 267, 343, 432, 535, 653, 787, 938, 1107, 1295, 1503, 1732, 1983, 2257, 2555, 2878, 3227, 3603, 4007, 4440, 4903, 5397, 5923, 6482, 7075, 7703, 8367, 9068, 9807, 10585, 11403, 12262, 13163, 14107, 15095, 16128, 17207
OFFSET
0,2
COMMENTS
The infinite word is (ab)(aab.abb)(aaab.aabb.abbb)(aaaab.aaabb.aabbb.abbbb)... . Subword complexity is the number of distinct length-n blocks appearing in the sequence.
LINKS
L. Schaeffer and K. Wu, Two Infinite Words with Cubic Subword Complexity, J. Integer Sequences 23 (2020), Paper 20.10.8.
FORMULA
Equal to 2^n for n <= 3, and n^3/6+n^2/2-5n/3+3 for n >= 4.
EXAMPLE
For n=4 the only word omitted is baba.
CROSSREFS
Cf. A338761.
Sequence in context: A284275 A054159 A222028 * A056181 A101976 A339656
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, Nov 07 2020
STATUS
approved