login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338435
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = n!*LaguerreL(n, -k*n).
1
1, 1, 1, 1, 2, 2, 1, 3, 14, 6, 1, 4, 34, 168, 24, 1, 5, 62, 654, 2840, 120, 1, 6, 98, 1626, 17688, 61870, 720, 1, 7, 142, 3246, 59928, 616120, 1649232, 5040, 1, 8, 194, 5676, 151064, 2844120, 26252496, 51988748, 40320, 1, 9, 254, 9078, 318744, 9052120, 165100752, 1322624016, 1891712384, 362880
OFFSET
0,5
FORMULA
T(n,k) = Sum_{j=0..n} (k*n)^j * (n-j)! * binomial(n,j)^2.
T(n,k) = n! * [x^n] exp(k*n*x/(1-x))/(1-x).
T(n,k) = A289192(n,k*n).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, ...
2, 14, 34, 62, 98, ...
6, 168, 654, 1626, 3246, ...
24, 2840, 17688, 59928, 151064, ...
MATHEMATICA
T[n_, k_] := n! * LaguerreL[n, -k*n]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 05 2021 *)
PROG
(PARI) T(n, k) = sum(j=0, n, (k*n)^j*(n-j)!*binomial(n, j)^2);
(PARI) T(n, k) = n!*pollaguerre(n, 0, -k*n); \\ Michel Marcus, Feb 05 2021
CROSSREFS
Main diagonal gives A340863.
Cf. A021009, A289192 (n!*LaguerreL(n, -k)), A341014.
Sequence in context: A061531 A368093 A368116 * A214722 A071430 A092514
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Feb 05 2021
STATUS
approved