login
A338312
Even composites m such that A056854(m)==7 (mod m).
0
4, 8, 10, 20, 40, 44, 104, 136, 152, 170, 190, 232, 260, 286, 442, 580, 740, 836, 890, 1364, 1378, 1990, 2204, 2260, 2584, 2626, 2684, 2834, 3016, 3160, 3230, 3926, 4220, 4636, 5662, 6290, 7208, 7384, 7540, 7676, 7964, 8294, 8420, 9164, 9316, 9320, 10070, 11476
OFFSET
1,1
COMMENTS
If p is a prime, then A056854(p)==7 (mod p).
This sequence contains the even composite integers for which the congruence holds.
The generalized Pell-Lucas sequence of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=7 and b=1, V(m) recovers A056854(m).
REFERENCES
D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (2020)
D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)
MATHEMATICA
Select[Range[2, 20000, 2], CompositeQ[#] && Divisible[2*ChebyshevT[#, 7/2] - 7, #] &]
CROSSREFS
Cf. A338082 (sequence of odd terms), A337777 (a=3), A338311 (a=6).
Sequence in context: A090696 A048247 A276607 * A130442 A031073 A323151
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Oct 22 2020
STATUS
approved