login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338039
Numbers m such that A338038(m) = A338038(A004086(m)) where A004086(i) is i read backwards and A338038(i) is the sum of the primes and exponents in the prime factorization of i ignoring 1-exponents; palindromes and multiples of 10 are excluded.
5
18, 81, 198, 576, 675, 819, 891, 918, 1131, 1304, 1311, 1818, 1998, 2262, 2622, 3393, 3933, 4031, 4154, 4514, 4636, 6364, 8181, 8749, 8991, 9478, 12441, 14269, 14344, 14421, 15167, 15602, 16237, 18018, 18449, 18977, 19998, 20651, 23843, 24882, 26677, 26892, 27225
OFFSET
1,1
COMMENTS
Palindromes (A002113) are excluded from the sequence because they obviously satisfy the condition.
Sequence is infinite since it includes 18, 1818, 181818, .... See link.
There are many cases of terms that are the repeated concatenation of integers like: 1818, 8181, 181818, ... , but also 131313131313131313131313131313 and more. See A338166.
If n is in the sequence and has d digits, and gcd(n, x) = gcd(A004086(n), x) where x = (10^((k+1)*d)-1)/(10^d-1), then the concatenation of k copies of n is also in the sequence. - Robert Israel, Oct 13 2020
LINKS
Chris Bispels, Muhammet Boran, Steven J. Miller, Eliel Sosis, and Daniel Tsai, v-Palindromes: An Analogy to the Palindromes, arXiv:2405.05267 [math.HO], 2024.
Muhammet Boran, Garam Choi, Steven J. Miller, Jesse Purice, and Daniel Tsai, A characterization of prime v-palindromes, arXiv:2307.00770 [math.NT], 2023.
Daniel Tsai, A recurring pattern in natural numbers of a certain property, arXiv:2010.03151 [math.NT], 2020.
Daniel Tsai, A recurring pattern in natural numbers of a certain property, Integers (2021) Vol. 21, Article #A32.
Daniel Tsai, v-palindromes: an analogy to the palindromes, arXiv:2111.10211 [math.HO], 2021.
EXAMPLE
For m = 18 = 2*3^2, A338038(18) = 2 + (3+2) = 7 and for m = 81 = 3^4, A338038(81) = 7, so 18 and 81 are terms.
MAPLE
rev:= proc(n) local L, i;
L:= convert(n, base, 10);
add(L[-i]*10^(i-1), i=1..nops(L))
end proc:
g:= proc(n) local t;
add(t[1]+t[2], t=subs(1=0, ifactors(n)[2]))
end proc:
filter:= proc(n) local r;
if n mod 10 = 0 then return false fi;
r:= rev(n);
r <> n and g(r)=g(n)
end proc:
select(filter, [$1..30000]); # Robert Israel, Oct 13 2020
MATHEMATICA
s[1] = 0; s[n_] := Plus @@ First /@ (f = FactorInteger[n]) + Plus @@ Select[Last /@ f, # > 1 &]; Select[Range[30000], !Divisible[#, 10] && (r = IntegerReverse[#]) != # && s[#] == s[r] &] (* Amiram Eldar, Oct 08 2020 *)
PROG
(PARI) f(n) = my(f=factor(n)); vecsum(f[, 1]) + sum(k=1, #f~, if (f[k, 2]!=1, f[k, 2])); \\ A338038
isok(m) = my(r=fromdigits(Vecrev(digits(m)))); (m % 10) && (m != r) && (f(r) == f(m));
CROSSREFS
Cf. A004086 (read n backwards), A002113, A029742 (non-palindromes), A338038, A338166.
Sequence in context: A039408 A043231 A044011 * A085504 A214531 A271502
KEYWORD
nonn,base
AUTHOR
Michel Marcus, Oct 08 2020
STATUS
approved