login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338030
Primes p such that reverse(p), reverse(2*p) and reverse(2*reverse(p)) are all primes, where reverse = A004086.
1
7, 17, 37, 71, 73, 167, 181, 191, 353, 373, 389, 761, 787, 797, 929, 983, 1753, 1879, 3571, 7057, 7177, 7507, 7717, 7879, 9349, 9439, 9781, 9787, 15053, 15227, 15307, 15451, 15551, 15667, 15679, 15791, 15919, 16061, 16073, 16453, 16547, 16561, 16747, 16883, 16979, 17471, 17909, 17971, 18427
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 37 is a term because 37, reverse(37)=73, reverse(2*37)=47 and reverse(2*73)=641 are prime.
MAPLE
rev:= proc(n) local L, k;
L:= convert(n, base, 10);
add(L[-k]*10^(k-1), k=1..nops(L))
end proc:
filter:= proc(n) local r;
if not isprime(n) then return false fi;
r:= rev(n);
isprime(r) and isprime(rev(2*n)) and isprime(rev(2*r))
end proc:
select(filter, [seq(i, i=3..20000, 2)]);
MATHEMATICA
With[{rev = IntegerReverse}, Select[Range[20000], AllTrue[{#, rev[#], rev[2*#], rev[2*rev[#]]}, PrimeQ] &]] (* Amiram Eldar, Oct 10 2020 *)
PROG
(PARI) rev(n) = fromdigits(Vecrev(digits(n))); \\ A004086
isok(p) = if (isprime(p), my(r=rev(p)); isprime(r) && isprime(rev(2*p)) && isprime(rev(2*r))); \\ Michel Marcus, Oct 10 2020
CROSSREFS
Sequence in context: A030432 A090147 A348560 * A211476 A155007 A214634
KEYWORD
nonn,base
AUTHOR
J. M. Bergot and Robert Israel, Oct 09 2020
STATUS
approved