login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337996
Triangle read by rows, generalized Eulerian polynomials evaluated at x = -1.
1
1, 0, 1, 0, 0, -4, 0, -2, 0, 26, 0, 0, 80, 352, 912, 0, 16, 0, -1936, -11552, -40368, 0, 0, -3904, -38528, -176832, -560896, -1424960, 0, -272, 0, 297296, 3150208, 17187888, 65931008, 201796240
OFFSET
0,6
FORMULA
The polynomials are defined P(0,0,x)=1 and P(n,k,x)=(1/2)*Sum_{m=0..n} S(m)*x^m where S(m) = Sum_{j=0..n+1}(-1)^j*binomial(n+1,j)*(k*(m-j)+1)^n*signum(k*(m-j)+1).
T(n, k) = P(n, k, -1).
EXAMPLE
Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 0, -4
[3] 0, -2, 0, 26
[4] 0, 0, 80, 352, 912
[5] 0, 16, 0, -1936, -11552, -40368
[6] 0, 0, -3904, -38528, -176832, -560896, -1424960
[7] 0, -272, 0, 297296, 3150208, 17187888, 65931008, 201796240
MAPLE
# The function GeneralizedEulerianPolynomial is defined in A337997.
T := (n, k) -> subs(x = -1, GeneralizedEulerianPolynomial(n, k, x)):
for n from 0 to 6 do seq(T(n, k), k=0..n) od;
PROG
(SageMath) # Generalized Eulerian polynomials based on recurrence.
@cached_function
def EulerianPolynomials(n, k):
R.<t> = PolynomialRing(ZZ)
if n == 0 or k == 0: return R(k^n)
return R((k*t*(1-t)*derivative(EulerianPolynomials(n-1, k), t, 1)
+ EulerianPolynomials(n-1, k)*(1+(k*n-1)*t)))
def T(n, k): return EulerianPolynomials(n, k).substitute(t=-1)
for n in (0..7): print([T(n, k) for k in (0..n)])
CROSSREFS
Sequence in context: A019200 A324820 A346085 * A087604 A090538 A371860
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Oct 07 2020
STATUS
approved