login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337989
Number of compositions (ordered partitions) of n^n into n-th powers.
1
1, 2, 120, 131204813713122
OFFSET
1,2
COMMENTS
The next term is too large to include.
FORMULA
a(n) = [x^(n^n)] 1 / (1 - Sum_{k>=1} x^(k^n)).
EXAMPLE
a(3) = 120 because 3^3 = 27 and we have [27], [8, 8, 8, 1, 1, 1] (20 permutations), [8, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] (78 permutations), [8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] (20 permutations), [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] and 1 + 20 + 78 + 20 + 1 = 120.
MATHEMATICA
Table[SeriesCoefficient[1/(1 - Sum[x^(k^n), {k, 1, n}]), {x, 0, n^n}], {n, 1, 4}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 06 2020
STATUS
approved