login
A337259
Compositions, sorted by increasing sum, increasing length and decreasing colexicographical order.
4
1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 1, 1, 4, 1, 3, 2, 2, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 5, 1, 4, 2, 3, 3, 2, 4, 1, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,2
EXAMPLE
The first 5 rows are:
(1),
(2), (1, 1),
(3), (1, 2), (2, 1), (1, 1, 1),
(4), (1, 3), (2, 2), (3, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 1, 1),
(5), (1, 4), (2, 3), (3, 2), (4, 1), (1, 1, 3), (1, 2, 2), (2, 1, 2), (1, 3, 1), (2, 2, 1), (3, 1, 1), (1, 1, 1, 2), (1, 1, 2, 1), (1, 2, 1, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).
MAPLE
List := proc(n)
local i, j, k, L:
L := []:
for i from 1 to n do
for j from 1 to i do
L := [op(L), op(ListTools:-Reverse([op(combinat:-composition(i, j))]))]:
od:
od:
for k from 1 to numelems(L) do L[k] := ListTools:-Reverse(L[k]): od:
L:
end:
CROSSREFS
Cf. A124734 (increasing length, then lexicographic).
Cf. A296774 (increasing length, then reverse lexicographic).
Cf. A337243 (increasing length, then colexicographic).
Cf. A296773 (decreasing length, then lexicographic).
Cf. A296772 (decreasing length, then reverse lexicographic).
Cf. A337260 (decreasing length, then colexicographic).
Cf. A108244 (decreasing length, then reverse colexicographic).
Cf. A228369 (lexicographic).
Cf. A066099 (reverse lexicographic).
Cf. A228525 (colexicographic).
Cf. A228351 (reverse colexicographic).
Sequence in context: A115758 A228351 A124734 * A037034 A340056 A229897
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved