Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Aug 02 2023 11:45:20
%S 1,2,13,89,691,5720,49555,443630,4071595,38105342,362271823,
%T 3488988101,33967656469,333752559392,3305347855573,32960499084305,
%U 330664662067795,3335002912108670,33796042027030855,343940115478559699,3513702627928096681,36021007341027948032
%N a(n) = (-1)^n + 3 * Sum_{k=0..n-1} a(k) * a(n-k-1).
%C Inverse binomial transform of A005159.
%H Seiichi Manyama, <a href="/A337169/b337169.txt">Table of n, a(n) for n = 0..964</a>
%F G.f. A(x) satisfies: A(x) = 1 / (1 + x) + 3*x*A(x)^2.
%F G.f.: (1 - sqrt(1 - 12*x / (1 + x))) / (6*x).
%F E.g.f.: exp(5*x) * (BesselI(0,6*x) - BesselI(1,6*x)).
%F a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * 3^k * Catalan(k).
%F a(n) ~ 11^(n + 3/2) / (8 * 3^(3/2) * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Nov 13 2021
%t a[n_] := a[n] = (-1)^n + 3 Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 21}]
%t Table[Sum[(-1)^(n - k) Binomial[n, k] 3^k CatalanNumber[k], {k, 0, n}], {n, 0, 21}]
%t Table[(-1)^n Hypergeometric2F1[1/2, -n, 2, 12], {n, 0, 21}]
%Y Cf. A000108, A005043, A005159, A337167, A337168.
%K nonn
%O 0,2
%A _Ilya Gutkovskiy_, Jan 28 2021