login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337011
a(n) = 2^n * exp(-1/2) * Sum_{k>=0} (k + 2)^n / (2^k * k!).
3
1, 5, 27, 159, 1025, 7221, 55307, 457631, 4065569, 38566021, 388757083, 4146851583, 46636281185, 551163837685, 6825500514059, 88341860285631, 1192267628956353, 16743728349797765, 244221140242647579, 3693367920926321375, 57821628101627115329
OFFSET
0,2
LINKS
FORMULA
E.g.f.: exp(4*x + (exp(2*x) - 1) / 2).
a(0) = 1; a(n) = 5 * a(n-1) + Sum_{k=2..n} binomial(n-1,k-1) * 2^(k-1) * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * 4^(n-k) * A004211(k).
MAPLE
E:= exp(4*x+exp(2*x)/2-1/2):
S:= series(E, x, 31):
seq(coeff(S, x, n)*n!, n=0..30); # Robert Israel, Aug 14 2020
MATHEMATICA
nmax = 20; CoefficientList[Series[Exp[4 x + (Exp[2 x] - 1)/2], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = 5 a[n - 1] + Sum[Binomial[n - 1, k - 1] 2^(k - 1) a[n - k], {k, 2, n}]; Table[a[n], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 11 2020
STATUS
approved