login
A336613
Numbers m such that tau(sigma(m)) divides m, where tau(m) is the number of divisors function (A000005) and sigma(m) is the sum of divisors function (A000203).
2
1, 2, 3, 4, 6, 8, 12, 16, 24, 36, 48, 64, 72, 80, 81, 84, 100, 112, 120, 128, 140, 144, 156, 160, 162, 168, 192, 198, 200, 208, 210, 216, 240, 256, 270, 288, 300, 320, 324, 336, 357, 360, 368, 384, 390, 420, 432, 448, 464, 468, 480, 512, 560, 576, 592, 600, 624, 630
OFFSET
1,2
COMMENTS
Two subsets of terms:
1) If 2^p - 1 is a Mersenne prime (p is in A000043 and 2^p-1 is in A000668), then m = 2^(p-1) is a term that belongs to A019279: the even superperfect numbers (2, 4, 16, 64, 4096, ...). Proof: sigma(m) = 1+2+...+2^(p-1) = 2^p - 1 that is a Mersenne prime so tau(2^p-1) = 2 that divides m = 2^(p-1); indeed, m/tau(sigma(m)) = 2^(p-2).
2) If m = 2^(p-1) is a term as above, then 3*m is another term (see example) with 3*m/tau(sigma(3*m)) = 2^(p-2).
EXAMPLE
48 = 2^4 * 3, so, sigma(48) = sigma(2^4) * sigma(3) = (2^5 - 1) * (1+3) = 31 * 4 = 124; then, tau(2^2 * 31) = tau(4) * tau(31) = 3 * 2 = 6, and 48/6 = 8 = 2^3, hence 48 is a term.
MAPLE
with(numtheory) filter:= m -> m/tau(sigma(m)) = floor(m/tau(sigma(m))) : select(filter, [$1..650]);
MATHEMATICA
Select[Range[630], Divisible[#, DivisorSigma[0, DivisorSigma[1, #]]] &] (* Amiram Eldar, Jul 30 2020 *)
PROG
(PARI) isok(m) = !(m % numdiv(sigma(m))); \\ Michel Marcus, Jul 30 2020
CROSSREFS
Cf. A019279 (subsequence), A336612 (sigma(tau(m)) divides m).
Sequence in context: A018328 A018280 A068927 * A018261 A306201 A218935
KEYWORD
nonn
AUTHOR
Bernard Schott, Jul 29 2020
STATUS
approved