login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the sum of all numbers that divide at least one of the composites between prime(n) and prime(n+1).
4

%I #21 Feb 05 2023 11:02:46

%S 7,12,42,28,75,39,106,214,72,289,202,96,230,429,471,168,544,362,195,

%T 631,429,749,1125,540,216,560,280,612,2557,679,1195,288,2169,372,1391,

%U 1378,830,1540,1479,546,2750,508,1025,468,3835,3900,1245,560,1262,1995,744,3576,2328,2195,2345,720,2449

%N a(n) is the sum of all numbers that divide at least one of the composites between prime(n) and prime(n+1).

%H Robert Israel, <a href="/A335579/b335579.txt">Table of n, a(n) for n = 2..10000</a>

%e For n=4, the composites between prime(4) and prime(5) are 8, 9, 10.

%e The numbers that divide at least one of these are {1,2,4,8} union {1,3,9} union {1,2,5,10} = {1,2,3,4,5,8,9,10}, and a(4) = 1+2+3+4+5+8+9+10 = 42.

%p f:= proc(n) local i,S;

%p S:= `union`(seq(numtheory:-divisors(i),i=ithprime(n)+1..ithprime(n+1)-1));

%p convert(S,`+`);

%p end proc:

%p map(f, [$2..100]);

%t a[n_] := Divisors /@ Range[Prime[n]+1, Prime[n+1]-1] // Flatten // Union // Total;

%t Table[a[n], {n, 2, 100}] (* _Jean-François Alcover_, Feb 05 2023 *)

%o (PARI) a(n) = my(s=[]); for (c=prime(n)+1, prime(n+1)-1, s = setunion(s, divisors(c))); vecsum(s); \\ _Michel Marcus_, Jan 27 2021

%o (Python)

%o from sympy import prime, divisors

%o def a(n): return sum(set(d for c in range(prime(n)+1, prime(n+1)) for d in divisors(c)))

%o print([a(n) for n in range(2, 59)]) # _Michael S. Branicky_, Jul 12 2021

%Y Cf. A000040, A061120, A061141.

%K nonn,look

%O 2,1

%A _J. M. Bergot_ and _Robert Israel_, Jan 26 2021