login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335577
a(0) = 1; a(n) = -Sum_{k=1..n} binomial(n,k) * k^2 * a(n-k).
1
1, -1, -2, 9, 32, -285, -1236, 18725, 86176, -2087001, -9204580, 351964569, 1336442304, -83422970917, -231889447076, 26389118293005, 35917342192064, -10722110983670193, 5028963509133756, 5432569724760331841, -14852185163192897120, -3352369390318855889661
OFFSET
0,3
FORMULA
E.g.f.: 1 / (1 + exp(x) * x * (1 + x)).
E.g.f.: 1 / (1 + Sum_{k>=1} k^2 * x^k / k!).
MATHEMATICA
a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n, k] k^2 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]
nmax = 21; CoefficientList[Series[1/(1 + Exp[x] x (1 + x)), {x, 0, nmax}], x] Range[0, nmax]!
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jan 26 2021
STATUS
approved