login
A335511
Number of (1,1,1)-avoiding permutations of the prime indices of n.
6
1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 3, 1, 2, 2, 0, 1, 3, 1, 3, 2, 2, 1, 0, 1, 2, 0, 3, 1, 6, 1, 0, 2, 2, 2, 6, 1, 2, 2, 0, 1, 6, 1, 3, 3, 2, 1, 0, 1, 3, 2, 3, 1, 0, 2, 0, 2, 2, 1, 12, 1, 2, 3, 0, 2, 6, 1, 3, 2, 6, 1, 0, 1, 2, 3, 3, 2, 6, 1, 0, 0, 2, 1, 12, 2, 2
OFFSET
1,6
COMMENTS
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).
FORMULA
If n is cubefree, a(n) = A008480(n), otherwise a(n) = 0.
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Length[Select[Permutations[primeMS[n]], !MatchQ[#, {___, x_, ___, x_, ___, x_, ___}]&]], {n, 100}]
CROSSREFS
Patterns avoiding this pattern are counted by A080599.
These compositions are counted by A232432.
The (1,1)-avoiding version is A335451.
The complement A335510 is the matching version.
These permutations are ranked by A335513.
Patterns are counted by A000670 and ranked by A333217.
Permutations of prime indices are counted by A008480.
Anti-run permutations of prime indices are counted by A335452.
Sequence in context: A376623 A294599 A376615 * A345221 A346633 A080940
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 19 2020
STATUS
approved