OFFSET
0,2
COMMENTS
These patterns comprise the basis of the class of patterns generated by this composition.
We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
LINKS
EXAMPLE
The bases of classes generated by (), (1), (2,1,1), (3,1,2), (2,1,2,1), and (1,2,1), corresponding to n = 0, 1, 11, 38, 45, 13, are the respective columns below.
(1) (1,1) (1,2) (1,1) (1,1,1) (1,1,1)
(1,2) (1,1,1) (1,2,3) (1,1,2) (1,1,2)
(2,1) (2,2,1) (1,3,2) (1,2,2) (1,2,2)
(3,2,1) (2,1,3) (1,2,3) (1,2,3)
(2,3,1) (1,3,2) (1,3,2)
(3,2,1) (2,1,3) (2,1,1)
(2,3,1) (2,1,2)
(3,1,2) (2,1,3)
(3,2,1) (2,2,1)
(2,2,1,1) (2,3,1)
(3,1,2)
(3,2,1)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jun 20 2020
STATUS
approved