login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A(n,k) = !n + [n > 0] * (k * n!), where !n = A000166(n) is subfactorial of n and [] is an Iverson bracket; square array A(n,k), n>=0, k>=0, read by antidiagonals.
6

%I #22 Feb 11 2021 10:36:29

%S 1,1,0,1,1,1,1,2,3,2,1,3,5,8,9,1,4,7,14,33,44,1,5,9,20,57,164,265,1,6,

%T 11,26,81,284,985,1854,1,7,13,32,105,404,1705,6894,14833,1,8,15,38,

%U 129,524,2425,11934,55153,133496,1,9,17,44,153,644,3145,16974,95473,496376,1334961

%N A(n,k) = !n + [n > 0] * (k * n!), where !n = A000166(n) is subfactorial of n and [] is an Iverson bracket; square array A(n,k), n>=0, k>=0, read by antidiagonals.

%H Alois P. Heinz, <a href="/A334715/b334715.txt">Antidiagonals n = 0..140, flattened</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Derangement">Derangement</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Iverson_bracket">Iverson bracket</a>

%F E.g.f. of column k: (k*exp(x)*x+1)*exp(-x)/(1-x).

%F A(n,k) = A000166(n) + [n > 0] * (k * n!).

%F A(n,k) = (k-1)*n + 1 if n<2, A(n,k) = n*A(n-1, k) + (-1)^n if n>=2.

%e Square array A(n,k) begins:

%e 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 0, 1, 2, 3, 4, 5, 6, 7, ...

%e 1, 3, 5, 7, 9, 11, 13, 15, ...

%e 2, 8, 14, 20, 26, 32, 38, 44, ...

%e 9, 33, 57, 81, 105, 129, 153, 177, ...

%e 44, 164, 284, 404, 524, 644, 764, 884, ...

%e 265, 985, 1705, 2425, 3145, 3865, 4585, 5305, ...

%e 1854, 6894, 11934, 16974, 22014, 27054, 32094, 37134, ...

%e ...

%p A:= proc(n, k) option remember; `if`(n<2,

%p (k-1)*n+1, n*A(n-1, k)+(-1)^n)

%p end:

%p seq(seq(A(n, d-n), n=0..d), d=0..10);

%t A[n_, k_] := Subfactorial[n] + Boole[n>0] k n!;

%t Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Feb 11 2021 *)

%Y Columns k=0-3 give: A000166, A001120, A110043, A110149.

%Y Rows n=0-3 give: A000012, A001477, A005408, A016933.

%Y Main diagonal gives A334716.

%Y Cf. A000142.

%K nonn,tabl

%O 0,8

%A _Alois P. Heinz_, May 08 2020