login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334257
Triangle read by rows: T(n,k) is the number of ordered pairs of n-permutations with exactly k common double descents, n>=0, 0<=k<=max{0,n-2}.
2
1, 1, 4, 35, 1, 545, 30, 1, 13250, 1101, 48, 1, 463899, 51474, 2956, 70, 1, 22106253, 3070434, 217271, 7545, 96, 1, 1375915620, 229528818, 19372881, 864632, 20322, 126, 1, 108386009099, 21107789247, 2070917370, 113587335, 3530099, 61089, 160, 1
OFFSET
0,3
COMMENTS
An ordered pair of n-permutations ((a_1,a_2,...,a_n),(b_1,b_2,...,b_n)) has a common double descent at position i, 1<=i<=n-2, if a_i > a_i+1 > a_i+2 and b_i > b_i+1 > b_i+2.
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, example 3.18.3e, page 366.
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; page 209.
EXAMPLE
T(4,1) = 30: There are 9 such ordered pairs formed from the permutations 3421,2431,1432. There are 9 such ordered pairs formed from the permutations 4312,4213,3214. Then pairing each of these 6 permutations with 4321 gives 12 more ordered pairs with exactly 1 common double descent. 9+9+12 = 30.
Triangle T(n,k) begins:
1;
1;
4;
35, 1;
545, 30, 1;
13250, 1101, 48, 1;
463899, 51474, 2956, 70, 1;
...
MAPLE
b:= proc(n, u, v, t) option remember; expand(`if`(n=0, 1,
add(add(b(n-1, u-j, v-i, x)*t, i=1..v)+
add(b(n-1, u-j, v+i-1, 1), i=1..n-v), j=1..u)+
add(add(b(n-1, u+j-1, v-i, 1), i=1..v)+
add(b(n-1, u+j-1, v+i-1, 1), i=1..n-v), j=1..n-u)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2, 1)):
seq(T(n), n=0..10); # Alois P. Heinz, Apr 26 2020
MATHEMATICA
nn = 8; a = Apply[Plus, Table[Normal[Series[y x^3/(1 - y x - y x^2), {x, 0, nn}]][[n]]/(n +2)!^2, {n, 1, nn - 2}]] /. y -> y - 1; Map[Select[#, # > 0 &] &,
Range[0, nn]!^2 CoefficientList[Series[1/(1 - x - a), {x, 0, nn}], {x, y}]] // Grid
CROSSREFS
Column k=0 gives A334412.
Sequence in context: A055621 A000860 A222397 * A193994 A097382 A266063
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Apr 26 2020
STATUS
approved