login
A334114
Decimal expansion of volume of a sphenomegacorona (J88) with each edge of unit length.
1
1, 9, 4, 8, 1, 0, 8, 2, 2, 8, 8, 5, 9, 4, 7, 2, 8, 0, 3, 2, 7, 0, 6, 7, 6, 3, 9, 0, 0, 1, 6, 6, 7, 6, 4, 1, 4, 1, 8, 4, 7, 8, 0, 8, 1, 3, 5, 6, 2, 7, 4, 6, 3, 7, 5, 5, 3, 6, 7, 6, 3, 3, 7, 6, 0, 0, 9, 5, 6, 2, 3, 8, 5, 0, 4, 7, 1, 5, 1, 9, 6, 4, 7, 1, 1, 7, 4
OFFSET
1,2
COMMENTS
A sphenomegacorona is one of the 92 regular-faced non-isogonal convex polyhedra first enumerated by Norman W. Johnson. It's built out of 2 squares and 12 equilateral triangles.
This number is algebraic, of unknown degree.
It appears that the minimal polynomial is 521578814501447328359509917696*x^32 - 985204427391622731345740955648*x^30 - 16645447351681991898880656015360*x^28 + 79710816694053483249372512649216*x^26 - 152195045391070538203422101864448*x^24 + 156280253448056209478031589244928*x^22 - 96188116617075838858708654227456*x^20 + 30636368373570166303441645731840*x^18 + 5828527077458909552923002273792*x^16 - 8060049780765551057159394951168*x^14 + 1018074792115156107372011716608*x^12 + 35220131544370794950945931264*x^10 + 327511698517355918956755959808*x^8 - 116978732884218191486738706432*x^6 + 10231563774949176791703149568*x^4 - 366323949299263261553952192*x^2 + 3071435678740442112675625. - Joerg Arndt, Apr 16 2020
LINKS
Violeta Hernández Palacios, Table of n, a(n) for n = 1..20000
Norman W. Johnson, Convex Polyhedra with Regular Faces, Canadian Journal of Mathematics, 18 (1966), 169-200.
A. V. Timofeenko, The non-platonic and non-Archimedean noncomposite polyhedra, Journal of Mathematical Sciences, 162(2009), 720-722.
Eric Weisstein's World of Mathematics, Sphenomegacorona.
EXAMPLE
1.94810822885947280327067639...
MATHEMATICA
k := Root[-23 - 56 x + 200 x^2 + 304 x^3 - 776 x^4 + 240 x^5 +
2000 x^6 - 5584 x^7 - 3384 x^8 + 17248 x^9 + 2464 x^10 -
24576 x^11 + 1568 x^12 + 17216 x^13 - 3712 x^14 - 4800 x^15 +
1680 x^16, 2];
{{0, 1/2, Sqrt[1 - k^2]}, {k, 1/2, 0}, {0, Sqrt[(3/4 - k^2)/(1 - k^2)] + 1/2, (1/2 - k^2)/Sqrt[1 - k^2]}, {1/2, 0, -Sqrt[1/2 + k - k^2]}, {0, (Sqrt[3/4 - k^2] (2 k^2 - 1))/((k^2 - 1) Sqrt[1 - k^2]) + 1/2, (k^4 - 1/2)/(1 - k^2)^(3/2)}};
v = Union[%, {1, -1, 1}*# & /@ %, {-1, 1, 1}*# & /@ %, {-1, -1,
1}*# & /@ %];
f := {{2, 3, 12, 11}, {2, 3, 10, 9}, {3, 12, 5}, {3, 10, 5}, {12, 5,
7}, {10, 5, 7}, {7, 12, 8}, {7, 10, 1}, {12, 8, 11}, {10, 1,
9}, {8, 1, 7}, {8, 1, 6}, {8, 11, 6}, {1, 9, 6}, {11, 6, 4}, {9,
6, 4}, {4, 11, 2}, {4, 9, 2}};
RealDigits[N[Volume[Polyhedron[v, f]], 20000]][[1]]
CROSSREFS
Volumes of other Johnson solids: A179552, A179587, A179590.
Sequence in context: A113273 A011460 A196522 * A268315 A019659 A155821
KEYWORD
nonn,cons
AUTHOR
STATUS
approved