OFFSET
0,3
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^2 = -log((6 - BesselI(0,2*sqrt(5*x))) / 5).
MATHEMATICA
a[0] = 0; a[n_] := a[n] = 5^(n - 1) + (1/n) Sum[Binomial[n, k]^2 5^(k - 1) (n - k) a[n - k], {k, 1, n - 1}]; Table[a[n], {n, 0, 17}]
nmax = 17; CoefficientList[Series[-Log[(6 - BesselI[0, 2 Sqrt[5 x]])/5], {x, 0, nmax}], x] Range[0, nmax]!^2
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 04 2020
STATUS
approved