login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333826
a(1)=1; for n>1, a(n) = the greatest common divisor (GCD) of n and the sum of all previous terms if the GCD is not already in the sequence; otherwise a(n) = a(n-1) + n.
2
1, 3, 6, 2, 7, 13, 20, 4, 13, 23, 34, 46, 59, 73, 88, 8, 25, 43, 62, 10, 31, 53, 76, 100, 125, 151, 178, 206, 235, 15, 46, 78, 111, 145, 5, 41, 78, 116, 155, 195, 236, 278, 321, 365, 410, 456, 503, 551, 600, 50, 101, 153, 206, 260, 315, 371, 428, 486, 545, 605, 666, 728, 791, 855, 920, 986, 1053
OFFSET
1,2
COMMENTS
This is a variation of A337490; here we start with an offset of 1, so a(1) = 1. See that sequence for further details.
In the first 4212 terms the sequence decreases 69 times while 45 terms are repeated, the first being 13 at n=9 and the last 399876 at n=4212. After n(4166)=84 the sequence does not decrease again for n up to at least 100 million. The lowest numbers that have not appeared in that range are 30,37,47,48,49,51. The 100 millionth term is 4999999941527298.
LINKS
Scott R. Shannon, Graph of the terms for n=1..4500. This includes the last known decrease in the sequence, n(4166)=84.
EXAMPLE
a(2) = 3 as the sum of all previous terms is a(1) = 1, and the GCD of 1 and 2 is 1. However 1 has already appeared so a(2) = a(1) + n = 1 + 2 = 3.
a(4) = 2 as the sum of all previous terms is a(1)+a(2)+a(3) = 10, and the GCD of 10 and 4 is 2, and as 2 has not previous appeared a(4) = 2.
a(8) = 4 as the sum of all previous terms is a(1)+...+a(7) = 52, and the GCD of 52 and 8 is 4, and as 4 has not previous appeared a(8) = 4.
PROG
(PARI) lista(nn) = {my(va = vector(nn), s=0); va[1] = 1; s += va[1]; for (n=2, nn, my(g = gcd(n, s)); if (#select(x->(x==g), va), va[n] = va[n-1]+n, va[n] = g); s += va[n]; ); va; } \\ Michel Marcus, Sep 05 2020
CROSSREFS
Cf. A337490 (same sequence rules but starting a(0)=1), A333980, A165430, A064814, A082299, A005132, A336957.
Sequence in context: A078783 A273465 A328503 * A125717 A065232 A074170
KEYWORD
nonn
AUTHOR
Scott R. Shannon, Sep 03 2020
STATUS
approved