%I #8 Feb 13 2020 20:17:36
%S 1,2,0,6,0,1,19,2,2,0,96,14,11,0,1,670,163,51,2,2,0,8191,2583,495,21,
%T 11,0,1,183149,70667,8127,314,61,2,2,0,7888271,3566498,268125,6929,
%U 644,21,11,0,1
%N Triangle read by rows: T(n,k) is the number of graphs on n unlabeled nodes with total domination number k, n >= 2, 2 <= k <= n.
%C Only graphs without isolated nodes can have a total dominating set.
%C The total domination number of a graph is greater than or equal to the domination number.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TotalDominationNumber.html">Total Domination Number</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Dominating_set">Dominating set</a>
%F T(2*n, 2*n) = 1; T(2*n+1, 2*n) = 2; T(2*n+1, 2*n+1) = T(2*n+2, 2*n+1) = 0.
%e Triangle begins, n >= 2, k >= 2:
%e 1;
%e 2, 0;
%e 6, 0, 1;
%e 19, 2, 2, 0;
%e 96, 14, 11, 0, 1;
%e 670, 163, 51, 2, 2, 0;
%e 8191, 2583, 495, 21, 11, 0, 1;
%e 183149, 70667, 8127, 314, 61, 2, 2, 0;
%e 7888271, 3566498, 268125, 6929, 644, 21, 11, 0, 1;
%e ...
%Y Column k=2 is A332406.
%Y Row sums are A002494.
%Y Cf. A263284, A286958.
%K nonn,tabl,more
%O 2,2
%A _Andrew Howroyd_, Feb 11 2020