login
A332282
Numbers whose unsorted prime signature is not unimodal.
36
300, 588, 600, 980, 1176, 1200, 1452, 1500, 1960, 2028, 2100, 2205, 2352, 2400, 2420, 2904, 2940, 3000, 3300, 3380, 3388, 3468, 3900, 3920, 4056, 4116, 4200, 4332, 4410, 4704, 4732, 4800, 4840, 5100, 5445, 5700, 5780, 5808, 5880, 6000, 6348, 6468, 6600, 6615
OFFSET
1,1
COMMENTS
The unsorted prime signature of a positive integer (row n of A124010) is the sequence of exponents it is prime factorization.
A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
Also Heinz numbers of integer partitions with non-unimodal run-lengths. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
EXAMPLE
The sequence of terms together with their prime indices begins:
300: {1,1,2,3,3}
588: {1,1,2,4,4}
600: {1,1,1,2,3,3}
980: {1,1,3,4,4}
1176: {1,1,1,2,4,4}
1200: {1,1,1,1,2,3,3}
1452: {1,1,2,5,5}
1500: {1,1,2,3,3,3}
1960: {1,1,1,3,4,4}
2028: {1,1,2,6,6}
2100: {1,1,2,3,3,4}
2205: {2,2,3,4,4}
2352: {1,1,1,1,2,4,4}
2400: {1,1,1,1,1,2,3,3}
2420: {1,1,3,5,5}
2904: {1,1,1,2,5,5}
2940: {1,1,2,3,4,4}
3000: {1,1,1,2,3,3,3}
3300: {1,1,2,3,3,5}
3380: {1,1,3,6,6}
MATHEMATICA
unimodQ[q_]:=Or[Length[q]==1, If[q[[1]]<=q[[2]], unimodQ[Rest[q]], OrderedQ[Reverse[q]]]];
Select[Range[1000], !unimodQ[Last/@FactorInteger[#]]&]
CROSSREFS
The opposite version is A332642.
These are the Heinz numbers of the partitions counted by A332281.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Sequence in context: A116346 A102509 A250008 * A190879 A375384 A154061
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 19 2020
STATUS
approved