login
A332205
a(n) is the imaginary part of f(n) defined by f(0) = 0, and f(n+1) = f(n) + g((1+i)^(A065359(n) mod 8)) (where g(z) = z/gcd(Re(z), Im(z)) and i denotes the imaginary unit).
3
0, 0, 1, 0, 0, 1, 2, 2, 3, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 3, 4, 5, 6, 7, 7, 8, 7, 7, 8, 9, 9, 10, 9, 9, 8, 7, 7, 8, 7, 7, 6, 5, 4, 3, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 3, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 3, 4, 5, 6, 7, 7, 8, 7, 7, 8, 9, 9, 10, 11, 12, 13, 14
OFFSET
0,7
COMMENTS
Looks much like A005536, in particular in respect of its symmetries of scale (compare the scatterplots). - Peter Munn, Jun 21 2021
FORMULA
a(2^(2*k-1)) = A007052(k) for any k >= 0.
a(4^k-m) = a(m) for any k >= 0 and m = 0..4^k.
MATHEMATICA
A065359[0] = 0;
A065359[n_] := -Total[(-1)^PositionIndex[Reverse[IntegerDigits[n, 2]]][1]];
g[z_] := z/GCD[Re[z], Im[z]];
Module[{n = 0}, Im[NestList[# + g[(1+I)^A065359[n++]] &, 0, 100]]] (* Paolo Xausa, Aug 28 2024 *)
PROG
(PARI) \\ See Links section.
CROSSREFS
Cf. A005536, A007052, A065359, A332204 (real part and additional comments), A332206 (positions of 0's, cf. A001196).
Sequence in context: A318958 A194827 A335359 * A219237 A138774 A156988
KEYWORD
nonn,look,base
AUTHOR
Rémy Sigrist, Feb 07 2020
STATUS
approved