login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332172
a(n) = 7*(10^(2n+1)-1)/9 - 5*10^n.
1
2, 727, 77277, 7772777, 777727777, 77777277777, 7777772777777, 777777727777777, 77777777277777777, 7777777772777777777, 777777777727777777777, 77777777777277777777777, 7777777777772777777777777, 777777777777727777777777777, 77777777777777277777777777777, 7777777777777772777777777777777
OFFSET
0,1
COMMENTS
Indices of prime terms: {0, 1, 3, 7, 10, 12, 480, 949, ...} = A183178.
FORMULA
a(n) = 7*A138148(n) + 2*10^n.
G.f.: (2 + 505*x - 1200*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>2.
MAPLE
A332172 := n -> 7*(10^(n*2+1)-1)/9 -5*10^n;
MATHEMATICA
Array[7 (10^(2 # +1)-1)/9 -5*10^# &, 15, 0]
PROG
(PARI) apply( {A332172(n)=10^(n*2+1)\9*7-5*10^n}, [0..25])
(Python) def A332172(n): return 10**(n*2+1)//9*7-5*10^n
CROSSREFS
Cf. A138148 (cyclops numbers with binary digits only).
Cf. A332171 (analog with middle digit 1).
Cf. (A077777-1)/2 = A183178: indices of primes.
Cf. A002275 (repunits R_n = [10^n/9]), A002281 (7*R_n), A011557 (10^n).
Cf. A332171 .. A332179 (variants with different middle digit 1, ..., 9).
Sequence in context: A053600 A090275 A090565 * A072384 A109949 A375956
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Feb 06 2020
STATUS
approved