Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Aug 27 2021 16:29:10
%S 1,1,1,1,4,1,1,11,7,1,1,26,30,10,1,1,57,102,58,13,1,1,120,303,256,95,
%T 16,1,1,247,825,955,515,141,19,1,1,502,2116,3178,2310,906,196,22,1,1,
%U 1013,5200,9740,9078,4746,1456,260,25,1
%N T(n, k) = [x^(n-k)] 1/(((1 - 2*x)^k)*(1 - x)^(k + 1)). Triangle read by rows, for 0 <= k <= n.
%C The triangle is the matrix inverse of the Riordan square (see A321620) generated by (1 + x - sqrt(1 - 6*x + x^2))/(4*x) (see A172094), where we take the absolute value of the terms.
%C T(n,k) is the number of evil-avoiding (2413, 3214, 4132, and 4213 avoiding) permutations of length (n+2) that start with 1 and whose inverse has k descents. - _Donghyun Kim_, Aug 16 2021
%H Donghyun Kim and Lauren Williams, <a href="https://arxiv.org/abs/2102.00560">Schubert polynomials and the inhomogeneous TASEP on a ring</a>, arXiv:2102.00560 [math.CO], 2021.
%e Triangle starts:
%e [0] [1]
%e [1] [1, 1]
%e [2] [1, 4, 1]
%e [3] [1, 11, 7, 1]
%e [4] [1, 26, 30, 10, 1]
%e [5] [1, 57, 102, 58, 13, 1]
%e [6] [1, 120, 303, 256, 95, 16, 1]
%e [7] [1, 247, 825, 955, 515, 141, 19, 1]
%e [8] [1, 502, 2116, 3178, 2310, 906, 196, 22, 1]
%e [9] [1, 1013, 5200, 9740, 9078, 4746, 1456, 260, 25, 1]
%e ...
%e Seen as a square array (the triangle is formed by descending antidiagonals):
%e 1, 1, 1, 1, 1, 1, 1, 1, 1, ... [A000012]
%e 1, 4, 11, 26, 57, 120, 247, 502, 1013, ... [A000295]
%e 1, 7, 30, 102, 303, 825, 2116, 5200, 12381, ... [A045889]
%e 1, 10, 58, 256, 955, 3178, 9740, 28064, 77093, ... [A055583]
%e 1, 13, 95, 515, 2310, 9078, 32354, 106970, 333295, ...
%e 1, 16, 141, 906, 4746, 21504, 87374, 326084, 1136799, ...
%e 1, 19, 196, 1456, 8722, 44758, 204204, 849180, 3275931, ...
%p gf := k -> 1/(((1-2*x)^k)*(1-x)^(k+1)): ser := k -> series(gf(k), x, 32):
%p # Prints the triangle:
%p seq(lprint(seq(coeff(ser(k), x, n-k), k=0..n)), n=0..6);
%p # Prints the square array:
%p seq(lprint(seq(coeff(ser(k), x, n), n=0..8)), k=0..6);
%t (* The function RiordanSquare is defined in A321620; returns the triangle as a lower triangular matrix. *)
%t M := RiordanSquare[(1 + x - Sqrt[1 - 6 x + x^2])/(4 x), 9];
%t Abs[#] & /@ Inverse[PadRight[M]]
%Y Row sums A006012, alternating row sums A118434 with different signs, central column A091527.
%Y T(n, 1) = A000295(n+1) for n >= 1, T(n, 2) = A045889(n-2) for n >= 2, T(n, 3) = A055583(n-3) for n >= 3.
%Y Cf. A172094 (inverse up to sign).
%K nonn,tabl
%O 0,5
%A _Peter Luschny_, Feb 03 2020