login
A331820
Positive numbers k such that k and k + 1 are both negabinary-Niven numbers (A331728).
16
1, 2, 3, 8, 14, 15, 20, 32, 35, 56, 62, 63, 68, 80, 90, 95, 124, 125, 128, 174, 184, 185, 215, 224, 244, 245, 248, 254, 255, 260, 272, 275, 300, 304, 305, 320, 335, 342, 468, 469, 484, 485, 512, 515, 544, 545, 552, 575, 594, 636, 720, 762, 784, 785, 804, 846, 896
OFFSET
1,2
LINKS
EXAMPLE
8 is a term since both 8 and 8 + 1 = 9 are negabinary-Niven numbers: A039724(8) = 11000 and 1 + 1 + 0 + 0 + 0 = 2 is a divisor of 8, and A039724(9) = 11001 and 1 + 1 + 0 + 0 + 1 = 3 is a divisor of 9.
MATHEMATICA
negaBinWt[n_] := negaBinWt[n] = If[n == 0, 0, negaBinWt[Quotient[n - 1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[n]]; c = 0; k = 1; s = {}; v = Table[-1, {2}]; While[c < 60, If[negaBinNivenQ[k], v = Join[Rest[v], {k}]; If[AllTrue[Differences[v], # == 1 &], c++; AppendTo[s, k - 1]]]; k++]; s
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Jan 27 2020
STATUS
approved