login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331727
E.g.f.: -LambertW(-x/(1 + x)) / (1 + x).
2
0, 1, -2, 9, -32, 225, -1044, 11515, -53696, 1056321, -2809700, 164953371, 374457744, 42734920657, 415505963068, 17518516958475, 310367497789696, 10529847396874497, 258747727039635132, 8599295530916762779, 258064489282796717200, 9014901067536225062481
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n-1} (-1)^k * binomial(n,k)^2 * k! * (n - k)^(n - k - 1).
a(n) ~ (1 - exp(-1))^(n + 3/2) * n^(n-1). - Vaclav Kotesovec, Jan 26 2020
MATHEMATICA
nmax = 21; CoefficientList[Series[-LambertW[-x/(1 + x)]/(1 + x), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^k Binomial[n, k]^2 k! (n - k)^(n - k - 1), {k, 0, n - 1}], {n, 0, 21}]
PROG
(PARI) seq(n)={Vec(serlaplace(-lambertw(-x/(1 + x) + O(x*x^n)) / (1 + x)), -(n+1))} \\ Andrew Howroyd, Jan 25 2020
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jan 25 2020
STATUS
approved