login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331463
Numbers k such that k and k + 1 are both binary hoax numbers (A329936).
2
8, 15, 49, 50, 252, 489, 699, 725, 755, 799, 951, 979, 980, 988, 989, 1023, 1134, 1350, 1351, 1370, 1390, 1599, 1629, 1630, 1660, 1690, 1694, 1763, 1854, 1908, 1929, 1939, 1940, 1960, 2006, 2015, 2166, 2312, 2358, 2645, 2700, 2779, 2787, 2862, 2923, 2930, 2988
OFFSET
1,1
LINKS
EXAMPLE
8 is a term since both 8 and 8 + 1 = 9 are binary hoax numbers: 8 = 2^3 in binary representation is 1000 = 10^3 and 1 + 0 + 0 + 0 = 1 + 0, and 9 = 3^2 in binary representation is 1001 = 11^2 and 1 + 0 + 0 + 1 = 1 + 1.
MATHEMATICA
binWt[n_] := Total @ IntegerDigits[n, 2]; binHoaxQ[n_] := CompositeQ[n] && Total[binWt /@ FactorInteger[n][[;; , 1]]] == binWt[n]; seq = {}; isHoax1 = binHoaxQ[1]; Do[isHoax2 = binHoaxQ[n]; If[isHoax1 && isHoax2, AppendTo[seq, n-1]]; isHoax1 = isHoax2, {n, 2, 3000}]; seq
PROG
(Magma) hoax:=func<n| not IsPrime(n) and (&+Intseq(n, 2) eq &+[ &+Intseq(p, 2): p in PrimeDivisors(n)])>; [k:k in [2..3000]|hoax(k) and hoax(k+1)]; // Marius A. Burtea, Jan 17 2020
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Jan 17 2020
STATUS
approved