login
A331085
Positive negaFibonacci-Niven numbers: positive numbers divisible by the number of terms in their negaFibonacci representation (A331083).
22
1, 2, 4, 5, 6, 9, 10, 12, 13, 14, 18, 24, 26, 27, 30, 34, 36, 48, 55, 60, 64, 68, 69, 72, 78, 84, 86, 87, 88, 89, 90, 93, 94, 96, 99, 100, 102, 108, 110, 112, 116, 120, 140, 144, 150, 155, 156, 160, 172, 176, 177, 178, 180, 183, 184, 188, 192, 195, 196, 200, 204
OFFSET
1,2
COMMENTS
The k-th Fibonacci number is a term for all odd k, since its negaFibonacci representation is 1 followed by (k-1) zeros.
LINKS
EXAMPLE
4 is a term since the negaFibonacci representation of 4 is 10010 whose sum of digits is 1 + 0 + 0 + 1 + 0 = 2 which is a divisor of 4.
MATHEMATICA
ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]]; f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i]; negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s]; Select[Range[200], Divisible[#, negaFibTermsNum[#]] &]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Jan 08 2020
STATUS
approved