login
A330971
Numbers k such that for any decimal digit d in k, the remainder when k is divided by d+1 is 0.
2
0, 10, 12, 18, 40, 72, 90, 100, 102, 108, 110, 120, 126, 132, 140, 150, 180, 190, 210, 222, 240, 252, 288, 300, 312, 336, 340, 400, 410, 420, 440, 450, 490, 510, 522, 540, 552, 558, 616, 672, 720, 810, 828, 882, 900, 910, 940, 990, 1000, 1002, 1008, 1010, 1020
OFFSET
1,2
COMMENTS
If m belongs to this sequence, then 10*m also belongs to this sequence.
This sequence contains every multiple of 2520 (=lcm(1, 2, ..., 10)).
LINKS
EXAMPLE
72 mod (7+1) = 0, and 72 mod (2+1) = 0, so 72 belongs to this sequence.
PROG
(PARI) is(n) = fromdigits(apply(d -> n%(d+1), digits(n)))==0
CROSSREFS
Cf. A330970.
Sequence in context: A242335 A050579 A255845 * A135988 A038527 A270263
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Jan 05 2020
STATUS
approved