login
A330902
Odd numbers k such that s(k) = s(k+2), where s(k) is Schemmel's totient function of order 2 (A058026).
1
1, 9359, 23933, 97405, 131493, 304589, 529205, 6005613, 6024473, 6057257, 7636517, 9566549, 11481581, 25143017, 25439117, 28542745, 40473869, 57712193, 58761197, 69502169, 77085497, 78481397, 81127109, 95223857, 99815303, 104092517, 112282481, 119954477, 130052613
OFFSET
1,2
COMMENTS
Since s(k) = 0 for all even numbers k, they are trivial solutions of the equation s(k) = s(k+2) and therefore they were excluded from this sequence.
Analogous to A001494 since Schemmel's totient functions are a generalization of the Euler totient function (A000010).
REFERENCES
József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 3, p. 276.
LINKS
Victor Schemmel, Ueber relative Primzahlen, Journal für die reine und angewandte Mathematik, Vol. 70 (1869), pp. 191-192.
EXAMPLE
1 is a term since s(1) = s(3) = 1.
9359 is a term since s(9359) = s(9361) = 6615.
MATHEMATICA
f[p_, e_] := (p-2) * p^(e-1); s[1]=1; s[n_] := Times @@ (f @@@ FactorInteger[n]); seq={}; s1 = 1; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n-2]]; s1 = s2, {n, 3, 10^6, 2}]; seq
CROSSREFS
Sequence in context: A228519 A292283 A265457 * A323803 A246736 A289858
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 01 2020
STATUS
approved