login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330787
Triangle read by rows: T(n,k) is the number of strict multiset partitions of normal multisets of size n into k blocks, where a multiset is normal if it spans an initial interval of positive integers.
2
1, 2, 1, 4, 8, 1, 8, 32, 18, 1, 16, 124, 140, 32, 1, 32, 444, 888, 432, 50, 1, 64, 1568, 5016, 4196, 1060, 72, 1, 128, 5440, 26796, 34732, 15064, 2224, 98, 1, 256, 18768, 138292, 262200, 174240, 44348, 4172, 128, 1, 512, 64432, 698864, 1870840, 1781884, 692668, 112424, 7200, 162, 1
OFFSET
1,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
EXAMPLE
Triangle begins:
1;
2, 1;
4, 8, 1;
8, 32, 18, 1;
16, 124, 140, 32, 1;
32, 444, 888, 432, 50, 1;
64, 1568, 5016, 4196, 1060, 72, 1;
128, 5440, 26796, 34732, 15064, 2224, 98, 1;
...
The T(3,1) = 4 multiset partitions are {{1,1,1}}, {{1,1,2}}, {{1,2,2}}, {{1,2,3}}.
The T(3,2) = 8 multiset partitions are {{1},{1,1}}, {{1},{2,2}}, {{2},{1,2}}, {{1},{1,2}}, {{2},{1,1}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}.
The T(3,3) = 1 multiset partition is {{1},{2},{3}}.
MATHEMATICA
B[n_, k_] := Sum[Binomial[r, k] (-1)^(r-k), {r, k, n}];
row[n_] := Sum[B[n, j] SeriesCoefficient[ Product[(1 + x^k y)^Binomial[k + j - 1, j - 1], {k, 1, n}], {x, 0, n}], {j, 1, n}]/y + O[y]^n // CoefficientList[#, y]&;
Array[row, 10] // Flatten (* Jean-François Alcover, Dec 17 2020, after Andrew Howroyd *)
PROG
(PARI) \\ here B(n, k) is A239473(n, k)
B(n, k)={sum(r=k, n, binomial(r, k)*(-1)^(r-k))}
Row(n)={Vecrev(sum(j=1, n, B(n, j)*polcoef(prod(k=1, n, (1 + x^k*y + O(x*x^n))^binomial(k+j-1, j-1)), n))/y)}
{ for(n=1, 10, print(Row(n))) }
CROSSREFS
Row sums are A317776.
Column 1 is A000079(n-1).
Main diagonal is A000012.
Sequence in context: A208917 A161381 A220579 * A128412 A221660 A221062
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Dec 31 2019
STATUS
approved