login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330669
The prime indices of the prime powers (A000961).
1
0, 1, 2, 1, 3, 4, 1, 2, 5, 6, 1, 7, 8, 9, 3, 2, 10, 11, 1, 12, 13, 14, 15, 4, 16, 17, 18, 1, 19, 20, 21, 22, 2, 23, 24, 25, 26, 27, 28, 29, 30, 5, 3, 31, 1, 32, 33, 34, 35, 36, 37, 38, 39, 6, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49
OFFSET
1,3
LINKS
FORMULA
a(n) = A000720(A025473(n)). - Michel Marcus, Dec 24 2019
A000040(a(n))^A025474(n) = A000961(n) for n > 0. - Alois P. Heinz, Feb 20 2020
EXAMPLE
a(16) is 2 since A000961(16) is 27 which is 3^3 = (p_2)^3, i.e., the prime index of 3 is 2.
MAPLE
b:= proc(n) option remember; local k; for k from
1+b(n-1) while nops(ifactors(k)[2])>1 do od; k
end: b(1):=1:
a:= n-> `if`(n=1, 0, numtheory[pi](ifactors(b(n))[2, 1$2])):
seq(a(n), n=1..100); # Alois P. Heinz, Feb 20 2020
MATHEMATICA
mxn = 500; Join[{0}, Transpose[ Sort@ Flatten[ Table[ {Prime@n^ex, n}, {n, PrimePi@ mxn}, {ex, Log[Prime@n, mxn]}], 1]][[2]]]
PROG
(PARI) lista(nn) = {print1(0); for(n=2, nn, if(isprimepower(n, &p), print1(", ", primepi(p)))); } \\ Jinyuan Wang, Feb 19 2020
(Python)
from sympy import primepi, integer_nthroot, primefactors
def A330669(n):
if n == 1: return 0
def f(x): return int(n-2+x-sum(primepi(integer_nthroot(x, k)[0]) for k in range(1, x.bit_length())))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return int(primepi(primefactors(kmax)[0])) # Chai Wah Wu, Aug 20 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Grant E. Martin and Robert G. Wilson v, Dec 23 2019
STATUS
approved