OFFSET
1,4
COMMENTS
Also the number of finite sequences b(1..r) satisfying the conditions b(1) = 1, b(i+1) >= 4 b(i) for 1 <= i < r, and b(r) <= n.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000
Lukas Fleischer, Samin Riasat, Jeffrey Shallit, New Bounds on Antipowers in Binary Words, arXiv:1912.08147 [cs.FL], 2019.
MAPLE
a:= proc(n) option remember;
`if`(n<4, signum(n), a(n-1)+a(iquo(n, 4)))
end:
seq(a(n), n=1..75); # Alois P. Heinz, Dec 16 2019
MATHEMATICA
Nest[Append[#1, #1[[-1]] + #1[[Floor[#2/4] ]] ] & @@ {#, Length@ # + 1} &, {1, 1, 1}, 58] (* Michael De Vlieger, Mar 04 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, Dec 16 2019
STATUS
approved