OFFSET
0,3
FORMULA
Euler transform of A261049. The Euler transform of a sequence (s_1, s_2, ...) is the sequence with generating function Product_{i > 0} 1/(1 - x^i)^s_i.
EXAMPLE
The a(4) = 20 partitions:
((4)) ((22)) ((13)) ((112)) ((1111))
((2))((2)) ((1)(3)) ((1)(12)) ((1)(111))
((1))((3)) ((2)(11)) ((1))((111))
((1))((12)) ((11))((11))
((2))((11)) ((1))((1)(11))
((1))((1)(2)) ((1))((1))((11))
((1))((1))((2)) ((1))((1))((1))((1))
MATHEMATICA
ppl[n_, k_]:=Switch[k, 0, {n}, 1, IntegerPartitions[n], _, Join@@Table[Union[Sort/@Tuples[ppl[#, k-1]&/@ptn]], {ptn, IntegerPartitions[n]}]];
Table[Length[Select[ppl[n, 3], And@@UnsameQ@@@#&]], {n, 0, 10}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 17 2019
STATUS
approved