Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Mar 13 2024 04:42:09
%S 39300979,32074681,25874993,20591567,16122559,12374209,9260431,
%T 6702413,4628227,2972449,1675789,684731,-48817,-567863,-910661,
%U -1111031,-1198669,-1199447,-1135703,-1026521,-888001,-733519,-573977,-418043,-272381,-141871,-29819
%N 58 consecutive function values of the prime generating polynomial P(x) = (1/72)*x^6 + (1/24)*x^5 - (1583/72)*x^4 - (3161/24)*x^3 + (200807/36)*x^2 + (97973/3)*x - 11351: abs(P(n)) is prime for -45 <= n <= 12.
%C As of 2014, this is the polynomial with rational coefficients that produces the most primes for a contiguous region of n. It was found by François Dress and Bernard Landreau, see the publication linked below. The complete list of 58 values is provided as b-file.
%H Hugo Pfoertner, <a href="/A330363/b330363.txt">Table of n, a(n) for n = -45..12</a>
%H François Dress and Bernard Landreau, <a href="https://arxiv.org/abs/1402.7312">Polynômes de degré supérieur à 2 prenant beaucoup de valeurs premières</a>, arXiv:1402.7312 [math.NT], 28 Feb 2014.
%t Table[(((((x+3)*x-1583)*x-9483)*x+401614)*x+2351352)*x/72-11351, {x, -45, 12}] (* _Paolo Xausa_, Mar 13 2024 *)
%o (PARI) (P(x)=(((((x+3)*x-1583)*x-9483)/2*x+200807)/12*x+97973)/3*x-11351); [isprime(abs(p=P(n)))*p | n<-[-45..12]] \\ _M. F. Hasler_, Mar 11 2024
%Y Cf. A121887, A330364 (absolute values sorted by size).
%K sign,fini,full,less
%O -45,1
%A _Hugo Pfoertner_, Dec 12 2019
%E Name edited by _M. F. Hasler_, Mar 11 2024