login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330018
a(n) = Sum_{d|n} (bigomega(d) - omega(d)).
1
0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 0, 2, 0, 0, 0, 6, 0, 2, 0, 2, 0, 0, 0, 6, 1, 0, 3, 2, 0, 0, 0, 10, 0, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, 2, 2, 0, 0, 12, 1, 2, 0, 2, 0, 6, 0, 6, 0, 0, 0, 4, 0, 0, 2, 15, 0, 0, 0, 2, 0, 0, 0, 13, 0, 0, 2, 2, 0, 0, 0, 12, 6, 0, 0, 4, 0, 0, 0, 6, 0, 4
OFFSET
1,8
COMMENTS
Inverse Moebius transform of A046660.
LINKS
FORMULA
G.f.: Sum_{k>=1} A046660(k) * x^k / (1 - x^k).
a(n) = A069264(n) - A062799(n).
If m and n are coprime, a(m*n) = tau(m)*a(n) + tau(n)*a(m), where tau = A000005. - Robert Israel, Jun 12 2020
MAPLE
N:= 100: # for a(1)..a(N)
V:= Vector(N):
for d from 1 to N do
v:= add(t[2]-1, t=ifactors(d)[2]);
L:= [seq(i, i=d..N, d)]:
V[L]:= map(`+`, V[L], v);
od:
convert(V, list); # Robert Israel, Jun 12 2020
MATHEMATICA
a[n_] := Sum[PrimeOmega[d] - PrimeNu[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 90}]
PROG
(PARI) a(n) = sumdiv(n, d, bigomega(d) - omega(d)); \\ Michel Marcus, Jun 12 2020
CROSSREFS
Cf. A001221, A001222, A005117 (positions of 0's), A046660, A062799, A069264, A268340.
Sequence in context: A036876 A229038 A229143 * A065413 A372739 A107131
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 27 2019
STATUS
approved