login
A329753
Doubly square pyramidal numbers.
4
0, 1, 55, 1015, 9455, 56980, 255346, 924490, 2850730, 7757035, 19096385, 43312841, 91753025, 183453270, 349074740, 636310340, 1117143236, 1897397285, 3129084635, 5026125195, 7884086595, 12104671656, 18225763270, 26957923950, 39228339150, 56233289775, 79500340101, 110961532605
OFFSET
0,3
FORMULA
G.f.: x*(1 + 45*x + 510*x^2 + 1660*x^3 + 1715*x^4 + 519*x^5 + 30*x^6)/(1 - x)^10.
a(n) = A000330(A000330(n)).
a(n) = Sum_{k=0..A000330(n)} A000290(k).
a(n) = n *(2*n+1) *(n+2) *(n+1) *(2*n^2-n+3) *(2*n^3+3*n^2+n+3) /648. - R. J. Mathar, Nov 28 2019
MATHEMATICA
A000330[n_] := n (n + 1) (2 n + 1)/6; a[n_] := A000330[A000330[n]]; Table[a[n], {n, 0, 27}]
Table[Sum[k^2, {k, 0, n (n + 1) (2 n + 1)/6}], {n, 0, 27}]
nmax = 27; CoefficientList[Series[x (1 + 45 x + 510 x^2 + 1660 x^3 + 1715 x^4 + 519 x^5 + 30 x^6)/(1 - x)^10, {x, 0, nmax}], x]
LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 1, 55, 1015, 9455, 56980, 255346, 924490, 2850730, 7757035}, 28]
KEYWORD
nonn,easy,changed
AUTHOR
Ilya Gutkovskiy, Nov 20 2019
STATUS
approved