login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329726
Number of witnesses for Solovay-Strassen primality test of 2*n+1.
3
2, 4, 6, 2, 10, 12, 2, 16, 18, 2, 22, 4, 2, 28, 30, 2, 2, 36, 2, 40, 42, 4, 46, 6, 2, 52, 2, 2, 58, 60, 2, 8, 66, 2, 70, 72, 2, 2, 78, 2, 82, 8, 2, 88, 18, 2, 2, 96, 2, 100, 102, 8, 106, 108, 2, 112, 2, 4, 2, 10, 2, 4, 126, 2, 130, 18, 2, 136, 138, 2, 2, 8, 2
OFFSET
1,1
COMMENTS
Number of bases b, 1 <= b <= 2*n, such that GCD(b, 2*n+1) = 1 and b^n == (b / 2*n+1) (mod 2*n+1), where (b / 2*n+1) is a Jacobi symbol.
If 2*n+1 is composite then it is the number of bases b, 1 <= b <= 2*n, in which 2*n+1 is an Euler-Jacobi pseudoprime.
Differs from A071294 from n = 22.
REFERENCES
Paulo Ribenboim, The Little Book of Bigger Primes, 2nd ed., Springer-Verlag, New York, 2004, p. 96.
LINKS
Louis Monier, Evaluation and comparison of two efficient primality testing algorithms, Theoretical Computer Science, Vol. 11 (1980), pp. 97-108.
Eric Weisstein's World of Mathematics, Euler-Jacobi Pseudoprime.
FORMULA
a(n) = delta(n) * Product_{p|n} gcd((n-1)/2, p-1), where delta(n) = 2 if nu(n-1, 2) = min_{p|n} nu(p-1, 2), 1/2 if there is a prime p|n such that nu(p, n) is odd and nu(p-1, 2) < nu(n-1, 2), and 1 otherwise, where nu(n, p) is the exponent of the highest power of p dividing n.
a(p) = p-1 for prime p.
EXAMPLE
a(1) = 2 since there are 2 bases b in which 2*1 + 1 = 3 is an Euler-Jacobi pseudoprime: b = 1 since GCD(1, 3) = 1 and 1^1 == (1 / 3) == 1 (mod 3), and b = 2 since GCD(2, 3) = 1 and 2^1 == (2 / 3) == -1 (mod 3).
MATHEMATICA
v[n_] := Min[IntegerExponent[#, 2]& /@ (FactorInteger[n][[;; , 1]] - 1)];
pQ[n_, p_] := OddQ[IntegerExponent[n, p]] && IntegerExponent[p-1, 2] < IntegerExponent[n-1, 2];
psQ[n_] := AnyTrue[FactorInteger[n][[;; , 1]], pQ[n, #] &];
delta[n_] := If[IntegerExponent[n-1, 2] == v[n], 2, If[psQ[n], 1/2, 1]];
a[n_] := delta[n] * Module[{p = FactorInteger[n][[;; , 1]]}, Product[GCD[(n-1)/2, p[[k]]-1], {k, 1, Length[p]}]];
Table[a[n], {n, 3, 147, 2}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 20 2019
STATUS
approved