OFFSET
0,13
COMMENTS
T(n,k) is the constant term in the expansion of (-1 + Product_{j=1..k-1} (1 + x_j) + Product_{j=1..k-1} (1 + 1/x_j))^n for k > 0.
For fixed k > 0, T(n,k) ~ (2^k - 1)^(n + (k-1)/2) / (2^((k-1)^2/2) * sqrt(k) * (Pi*n)^((k-1)/2)). - Vaclav Kotesovec, Oct 28 2019
LINKS
Seiichi Manyama, Antidiagonals n = 0..100, flattened
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
0, 1, 3, 7, 15, 31, ...
0, 1, 7, 31, 115, 391, ...
0, 1, 19, 175, 1255, 8071, ...
0, 1, 51, 991, 13671, 161671, ...
MATHEMATICA
T[n_, k_] := Sum[(-1)^(n-i) * Binomial[n, i] * Sum[Binomial[i, j]^k, {j, 0, i}], {i, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 06 2021 *)
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Oct 27 2019
STATUS
approved