login
A328460
Number of compositions of n with no part divisible by the next.
14
1, 1, 1, 2, 2, 4, 5, 8, 11, 16, 26, 35, 53, 76, 115, 168, 244, 363, 528, 782, 1144, 1685, 2474, 3633, 5347, 7844, 11539, 16946, 24919, 36605, 53782, 79053, 116142, 170700, 250800, 368585, 541610, 795884, 1169572, 1718593, 2525522, 3711134, 5453542, 8013798, 11776138
OFFSET
0,4
LINKS
EXAMPLE
The a(1) = 1 through a(9) = 16 compositions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(21) (31) (23) (42) (25) (35) (27)
(32) (51) (34) (53) (45)
(41) (231) (43) (62) (54)
(321) (52) (71) (63)
(61) (251) (72)
(232) (323) (81)
(421) (341) (234)
(431) (252)
(521) (342)
(2321) (351)
(423)
(432)
(531)
(621)
(3231)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], !MatchQ[#, {___, x_, y_, ___}/; Divisible[y, x]]&]], {n, 0, 10}]
PROG
(PARI) seq(n)={my(r=matid(n)); for(k=1, n, for(i=1, k-1, r[i, k]=sum(j=1, k-i, if(j%i, r[j, k-i])))); concat([1], vecsum(Col(r)))} \\ Andrew Howroyd, Oct 19 2019
CROSSREFS
The case of partitions is A328171.
If we also require no part to be divisible by the prior, we get A328508.
Compositions with each part relatively prime to the next are A167606.
Compositions with no part relatively prime to the next are A178470.
Sequence in context: A089299 A017910 A240734 * A238478 A013979 A107458
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 17 2019
EXTENSIONS
Terms a(26) and beyond from Andrew Howroyd, Oct 19 2019
STATUS
approved