login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328004
Expansion of e.g.f. 1 / (1 - Sum_{k>=1} binomial(2*k,k) * x^k / k!).
2
1, 2, 14, 140, 1854, 30692, 609812, 14135816, 374486782, 11161030388, 369597971484, 13463177200376, 535000400076660, 23031528320070584, 1067766010124118200, 53038672987708575920, 2810204538580052967422, 158202066016882053997204, 9429962256806049820343564
OFFSET
0,2
FORMULA
E.g.f.: 1 / (2 - exp(2*x) * BesselI(0,2*x)).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * A000984(k) * a(n-k).
a(n) ~ n! / ((4 + 2*exp(2*r)*BesselI(1, 2*r)) * r^(n+1)), where r = 0.30197758068953447339121214393882523964817455046976015309132... is the root of the equation exp(2*r) * BesselI(0, 2*r) = 2. - Vaclav Kotesovec, Oct 02 2019
MATHEMATICA
nmax = 18; CoefficientList[Series[1/(2 - Exp[2 x] BesselI[0, 2 x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[2 k, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
PROG
(PARI) my(x='x+O('x^25)); Vec(serlaplace(1/(2 - exp(2*x) * (besseli(0, 2*x))))) \\ Michel Marcus, Oct 02 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 01 2019
STATUS
approved