login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327909
a(n) is the smallest start of a run of n or more integers having a prime factor greater than n.
2
2, 5, 13, 19, 55, 65, 113, 151, 151, 226, 364, 406, 736, 736, 1057, 1057, 1409, 1409, 2059, 2059, 2313, 2313, 2313, 2313, 2313, 2313, 2313, 6007, 6961, 6961, 10305, 12013, 12013, 12013, 12013, 12013, 12026, 12026, 17501, 17501, 17501, 17501, 20833, 20833
OFFSET
1,1
COMMENTS
Is a(n) an upper bound on A327265(n)? A327265(n) = a(n) at n = 1, 2, 4, and 9.
LINKS
EXAMPLE
| prime |
k | factorization | gpf(k) | tau(k)
----+---------------+--------+-------
151 | 151 | 151 | 2
152 | 2^3 * 19 | 19 | 8
153 | 3^2 * 17 | 17 | 6
154 | 2 * 7 * 11 | 11 | 8
155 | 5 * 31 | 31 | 4
156 | 2^2 * 3 * 13 | 13 | 12
157 | 157 | 157 | 2
158 | 2 * 79 | 79 | 4
159 | 3 * 53 | 53 | 4
MAPLE
A:= Vector(100): A[1]:= 2: count:= 1:
B:= Vector(100):
for i from 2 while count < 100 do
p:= max(numtheory:-factorset(i));
for j from 1 to min(p-1, 100) do
if B[j] = 0 then B[j]:= i fi
od;
for j from p to 100 do
if B[j] > 0 and B[j] <= i-j and A[j] = 0 then A[j]:= B[j]; count:= count+1; fi
od;
if p <= 99 then B[p..100]:= 0 fi;
od:
convert(A, list); # Robert Israel, Jan 23 2023
PROG
(PARI) a(n) = {my(k=1); x=0; while(x<n, if(vecmax(factor(k++)[, 1])>n, x++, x=0)); k-n+1; } \\ Jinyuan Wang, Oct 26 2019
CROSSREFS
Cf. A006530 (greatest prime factor of n).
Sequence in context: A191082 A068374 A068371 * A072899 A099982 A298991
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, Oct 06 2019
STATUS
approved